TIME SERIES PROCESSING

Written by mannem on . Posted in Achitectures

emrpipelinedynamodb

When data arrives as a succession of regular measurements, it is known as time series information. Processing of time series information poses systems scaling challenges that the elasticity of AWS services is uniquely positioned to address.
This elasticity is achieved by using Auto Scaling groups for ingest processing, AWS Data Pipeline for scheduled Amazon Elastic MapReduce jobs, AWS Data Pipeline for intersystem data orchestration, and Amazon Redshift for potentially massive-scale analysis. Key architectural throttle points involving Amazon SQS for sensor message buffering and less frequent AWS Data Pipeline scheduling keep the overall solution costs predictable and controlled.


Tags: , , , , , ,

Trackback from your site.

Leave a comment

  • cloudformation

    cloudformation

    pipeline

    Data-pipelines

    directoryservice

    directoryservicez

    cloudtrail

    cloudtrail

    config

    config

    trustedadvisor

    Trustedadvisor

  • snap

    Snapshot

    glacier

    Glacie

    storagegw

    Storage Gatewa

    s3

    S3

    cloudFront

    Cloud Front

  • r53

    Route 53

    lambda

    lambd

    directConnect

    DirectConnect

    vpc

    VPC

    kinesis

    Kinesis

    emr

    Emr

  • sns

    SNS

    transcoder

    Transcoder

    sqs

    SQS

    cloudsearch

    Cloud Search

    appstream

    App Stream

    ses

    SES

  • opsworks

    opsworks

    cloudwatch

    Cloud Watch

    beanstalk

    Elastic Beanstalk

    codedeploy

    Code Deploy

    IAM

    IAM

  • dynamodb

    dynamodb

    rds

    RDS

    elasticache

    ElastiCache

    redshift

    Redshift

    simpledb

    simpledb