Posts Tagged ‘hive’

Using AWS Athena to query S3 Server Access Logs.

Written by mannem on . Posted in EMR || Elastic Map Reduce

S3 server access logs can grow very big over time and it is very hard for a single machine to Process/Query/Analyze all these logs. So, we can use distributed computing to query the logs quickly. Ideally we might think of Apache Hadoop/Hive/Spark/Presto etc to process these logs. But, the simplicity of AWS Athena service as a Serverless model will make it even easier. This article will guide you to use Athena to process your s3 access logs with example queries and has some partitioning considerations which can help you to query TB’s of logs just in few seconds.

The server access log files consist of a sequence of new-line delimited log records. Each log record represents one request and consists of space delimited fields. The following is an example log consisting of six log records.

This article is based on the Log format of access logs specified here The field’s and its format may change and DDL QUERY should be changed accordingly.

Sample Data:

Data Format considerations:

On first look, the data format appears simple , which is a textfile with space filed delimiter and newline(/n) delimited. However, there is a catch in this data format, the columns like Time , RequestURI & User-Agent can have space in their data ( [06/Feb/2014:00:00:38 +0000] , "GET /gdelt/1980.csv.gz HTTP/1.1" & aws-cli/1.7.36 Python/2.7.9 Linux/3.14.44-32.39.amzn1.x86_64) which will mess up with the SerDe parsing .

For RequestURI & User-Agent field, the data is enclosed in quotes with spaces inside it. This can be parsed by any SerDe’s that support Quotes. Unfortunately, Athena does not support such SerDe’s like org.apache.hadoop.hive.serde2.OpenCSVSerde which does has quotes feature.

The org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe included by Athena will not support quotes yet.

A custom SerDe called comes with all EMR AMI’s just for parsing these logs. A query like the following would create the table easily. However, this SerDe will not be supported by Athena.

Looking at these limitations, the org.apache.hadoop.hive.serde2.RegexSerDe only seems like the feasible option. Writing RegEx for your log structure was bit time consuming , but I was able to write it with the help of ELB log structure example and .

I used the following Regex for the S3 server access logs :

([^ ]*) ([^ ]*) \\[(.*?)\\] ([^ ]*) ([^ ]*) ([^ ]*) ([^ ]*) ([^ ]*) \\\"([^ ]*) ([^ ]*) (- |[^ ]*)\\\" (-|[0-9]*) (-|[0-9]*) ([-0-9]*) ([-0-9]*) ([-0-9]*) ([-0-9]*) ([^ ]*) (\"[^\"]*\") ([^ ]*)$

Also found at : , where I removed some extra escape chars like \’s. In DDL , we need to add these escape characters like in following DDL.

([^ ]*) – matches a continuous string. Because the number fields like ‘time’ can return ‘-‘ character , I did not use ([-0-9]*) regex which is used for numbers. Because of same reason , I had to use STRING for all fields in DDL. We can use presto string functions to convert strings for appropriate conversions and comparison operators on DML

\\[(.*?)\\] or \\\[(.*?)\\\] – is for Time field – For a string like [06/Feb/2014:00:00:38 +0000], it will match and give a string like 05/Dec/2016:16:56:36 +0000 which is easier for querying between times.

\\\"([^ ]*) ([^ ]*) (- |[^ ]*)\\\" – is for Request-URI field – removes the quotes and splits the "GET /mybucket?versioning HTTP/1.1" into three groups.

(\"[^\"]*\") – is for User-Agent – matches the whole string with quotes.

(-|[0-9]*) – is for HTTPstatus which is always a number like 200 or 404 . If you expect a ‘-‘ string, you can use ([^ ]*) instead,


Where s3://s3server-accesslogs-bucket/logs/ is the bucket and prefix of you access logs.

Once you create the table, you can query this table for specific information :

Example Queries :

Any field can be set to “-” to indicate that the data was unknown or unavailable, or that the field was not applicable to this request.


1. From time to time, AWS might extend the access log record format by adding new fields to the end of each line.The DDL/RegEx must be written to handle trailing fields that it does not understand.
2. If the s3 directory is huge with a lot of log files , based on the query , you might encounter Athena’s “Query timeout: 30 minutes”. We have some optimizations here :

Partitioning / Compression :

Overtime, the logs in your target prefix(s3://s3server-accesslogs-bucket/logs/) can grow big. This is especially true if you have this same bucket/prefix for other buckets access logs. If you enable logging on multiple source buckets that identify the same target bucket, the target bucket will have access logs for all those source buckets, but each log object will report access log records for a specific source bucket.

Amazon S3 uses the following object key format for the log objects it uploads in the target bucket: TargetPrefixYYYY-mm-DD-HH-MM-SS-UniqueString . So, it basically creates multiple files with a bunch of logs in the S3 bucket.

Querying can be slower if there are large number of small files in textformat.

To speed things up, we need at-least one of these options to consolidate these logs.
1. PARTITIONING – can work on subset of files instead of going through all files.
2. CONVERT TO a COLUMNAR STORAGE – like ORC or PARQUET For faster query performance

Note that S3 access logs data are not partitioned and they are not organized with prefixes like /year/month/day or /year=2010/month=10/day=11/ etc using which Athena could make static or Dynamic partitions respectively. Also access logs are uncompressed and flat text files.

Unfortunately, we cannot enable all above options by just defining a DDL. We need to copy/move out text based data-set with the above options enabled. One option to use of AWS EMR to periodically structure and partition the S3 access logs so that you can query those logs easily with Athena. At this moment, it is not possible to use Athena itself to convert non-partitioned data into partitioned data.

On EMR, we could use either
HIVE : To partition/compress/covert , or
S3-DIST-CP utility : To compress/groupBy

Note that we can use EMR’s Presto / Spark etc to query the logs, but Athena being a serverless model is much easier to query without managing anything.

Here’s a example to convert Non partitioned s3 access logs to partitioned s3 access logs on EMR:

Continuing the Partitioning for incoming logs :

Note that above discussion talks about one time creation of all partitions. There’s two things to notice
1. While the above job is running , there could be new incoming logs which will not be partitioned onto destination.
2. Also after the job is completed, you keep getting new logs.

Which S3 files will be missed by the above job, really depends on hive-client’s split calculation on your source s3 bucket. when you run your ‘insert overwrite’ command, hive-client calculates splits initially by listing all objects inside the S3 prefix. This usually takes minutes and depends on number of s3 objects. After this split calculation is done, the actual jobs to do partitioning is done by mappers / reducers. So, any log files pushed to source prefix after split calculation is done will not be included on your job.

When you want to automatically add partitions to Athena table(Accesslogs_partitionedbyYearMonthDay) with new files coming to your S3 access logs with newer request days on your log bucket/prefix, you will need to have a ‘batch job on schedule’ or a ‘trigger mechanism’ to make sure the new data is also partitioned accordingly.

Batch job on schedule :

Note that our source s3 access logs are dumped into one single directory. Each file name is like 2016-12-05-17-17-06-5D51435906E10586. Since we can run our batch jobs after the above one-time-bulk-job, on the daily(or frequent) batches, we need to avoid the files that we already processed by previous one-time-job. For this , we can rely on the filename itself to get a list of newly generated files and then use an ETL to convert these files to partitioned data. We could also maintain a manifest file for the list of files already processed and the files which need to be processed etc.

Managing all that is left beyond this blog. There’s multiple ways to do ETL. One way is to run an AWS Data Pipeline with EMR, on schedule, and run the hive queries on the new data.


Trigger based solution :

If you want to run a partition job on every S3 PUT or bunch of PUTS , you can use AWS Lambda which can trigger a piece of code on every S3 object PUT. You can get Metadata about that put and Handle that on your Lambda code accordingly to fireoff an ETL etc to do the partitioning. AWS Lambda should come with AWS SDK and you can make all types of AWS API calls with proper permissions.

Other Input Regex’s :

'^(?!#)([^ ]+)\\s+([^ ]+)\\s+([^ ]+)\\s+([^ ]+)\\s+([^ ]+)\\s+([^ ]+)\\s+([^ ]+)\\s+([^ ]+)\\s+([^ ]+)\\s+([^ ]+)\\s+[^\(]+[\(]([^\;]+).*\%20([^\/]+)[\/](.*)$'
ELB access logs
'([^ ]*) ([^ ]*) ([^ ]*):([0-9]*) ([^ ]*):([0-9]*) ([.0-9]*) ([.0-9]*) ([.0-9]*) (-|[0-9]*) (-|[0-9]*) ([-0-9]*) ([-0-9]*) \\\”([^ ]*) ([^ ]*) (- |[^ ]*)\\\” ?(\”[^\”]*\”)? ?([A-Z0-9-]+)? ?([A-Za-z0-9.-]*)?$'
Apache web logs
'([^ ]*) ([^ ]*) ([^ ]*) (-|\\[[^\\]]*\\]) ([^ \"]*|\"[^\"]*\") (-|[0-9]*) (-|[0-9]*)(?: ([^ \"]*|\"[^\"]*\") ([^ \"]*|\"[^\"]*\"))?'

You may also like:
Using Athena to Query CloudTrail logs.
Parsing AWS Cloudtrail logs with EMR Hive and Spark

hive server 2 crashing with OutOfMemoryError (OOM) ?

Written by mannem on . Posted in EMR || Elastic Map Reduce

emr ear  

Often times HiveServer2 can be single point of failure. It can easy crash with OOM. If HiveServer2 restarts now-and-then , it must be due to OOM where it is likely set to be killed and re-spawned. We need to check the JVM options to see the behavior of this process on OOM , analyze thread dumps and check the underlying issue to mitigate such issues.

This post explains – How to identify OOM issue on HiveServer2 – How to analyze Thread/Heap dumps – How to Mitigate this issue. Some of the discussion is generic to EMR.

PART 1 : How to identify OOM issue on HiveServer2

Default JVM options of HS2 on EMR 4.7.2 AMI :

Some observations from above JVM:

1. Heap space for HiveServer2 JVM is 1000MB and this option is sourced from
2. Hive logging options like(-Dhive.log.dir=/var/log/hive -Dhive.log.file=hive-server2.log -Dhive.log.threshold=INFO -server) are sourced from /etc/init/hive-server2.conf
3. All other options starting from ‘-server’ are set by EMR.
4. If this JVM goes OutOfMemoryError , -XX:OnOutOfMemoryError=kill -9 %p option will kill HS2 on OOM.

If for some reason the HiveServer2 goes OOM , it simply gets killed and there is no way to find why.. hive-server2.log and hive-server2.out may not show OOM at all. you can check hive-server2.log to verify HiveServer2 getting restarted . So, we tweak JVM options for HS2 to include GC verbose and to Dump Heap On OutOfMemoryError.

With the following settings , if the HS2 process does go OOM , it would display the error like following on /var/log/hive/hive-server2.out. This message means that for some reason the garbage collector of this HS2 JVM is taking an excessive amount of time and recovers very little memory in each run.

An example script to enable GC verbose on HS2 JVM – can be like following on EMR 4.x.x and 5.x.x:

PART 2 : How to analyze Thread/Heap dumps

With above options if HS2 fails with OOM , it will log such error to /var/log/hive/hive-server2.out. It will also heap dump to a file like /var/log/hive/java_pid8548.hprof . There are multiple ways to open and analyze this file. I found “eclipse memory analyzer tool” helpful in identifying memory leaks and exploring thread dumps on java classes and sub-classes.



PART 3 : How to Mitigate this issue

1. Tweaking hive-site.xml by checking stack trace:

Best way to mitigate the OOM’s is to check the stack trace of the Hive-server2 process and see if there’s any leaks. It is also a good idea to check for top consumers and act accordingly. For each of those threads , see if any of the hive-site.xml settings would reduce its memory consumption. Some times you may not have control on any of the thread specifics , in which case , you may need to further increase the heap space.

For example : In the stack trace ,

– if you see multiple threads getting blocked etc, you can edit a setting like hive.server2.thrift.http.max.worker.threads

2. Mitigating OOM obviously involves increasing the Heap space for Hive-server2.

The heap space is defined in using env variable . Its important to identify memory requirements of 3 hive services HiveServer2 , Hive metastore , Hive clients in advance , using load/concurrency tests before moving to PROD. If you observe any OOM’s , you may need to increase memory accordingly.

Identifying hive services and increasing memory :

if ‘export HADOOP_HEAPSIZE=2048’ string is present on , it would be applied to all of the 3 hive services if restarted. So, you can use if-statements to provide different settings(HADOOP_HEAPSIZE and HADOOP_OPTS) for 3 of these hive services.

Example contents of :

3. High availability and LoadBalancing of Hiveserver2 :

Increasing heap space for HS2 may help , However , As per Cloudera , after certain memory limit, there is possibility that you continue to hit OOM no mater how much you increase the memory for HS2. In that case, “Cloudera recommends splitting HiveServer2 into multiple instances and load balancing once you start allocating >12 GB to HiveServer2. The objective is to size to reduce impact of Java garbage collection on active processing by the service.”

You may checkout the limitations here :

4. Watch out for any bugs in the LockManager :

If you are using Hive’s Table Lock Manager Service by setting to true , check if there’s issues with the Lockmanager which is responsible for maintaining locks for concurrent user support. Lockmanager can be ZooKeeperHiveLockManager based or can be EmbeddedLockManager which is shared lock manager for dedicated hive server , where – all locks are managed in memory. if the issue seems to be with these lock managers , you may need to edit their configs.

5. Check for generic version issues :

On Apache JIRA issues for hive-server2.

6. GC Tuning :

If the HS2 JVM is spending too much time on GC , you might consider some GC Tuning as discussed here :

Generate your own CSV/TSV data quickly with urandom + hexdump

Written by mannem on . Posted in Data-sets

In this article, we will use hexdump + urandom which are included in most linux distributions to quickly generate random data. The values of the first row should be unique and can also be used as hash or index key.

This can be useful, if you wanna upload this data to NoSQL databases like DynamoDB with Primary key as col1 values (or with sort key as second column values)

Here are some one liners to generate data :

Using a single hive warehouse for all EMR(Hadoop) clusters

Written by mannem on . Posted in EMR || Elastic Map Reduce

As the EMR/Hadoop cluster’s are transient, tracking all those databases and tables across clusters may be difficult. So, Instead of having different warehouse directories across clusters, You can use a single permanent hive warehouse across all EMR clusters. S3 would be a great choice as it is persistent storage and had robust architecture providing redundancy and read-after-write consistency.

For each cluster:

This can be configured using hive.metastore.warehouse.dir property on hive-site.xml.

You may need to update this setting on all nodes.

On a single hive session:

this can be configured using a command like set hive.metastore.warehouse.dir ="s3n://bucket/hive_warehouse"

or initialize hive cli with the following invocation -hiveconf hive.metastore.warehouse.dir=s3n://bucket/hive_warehouse

Note that using above configuration, all default databases and tables will be stored on s3 on path like s3://bucket/hive_warehouse/myHiveDatabase.db/

  • cloudformation












  • snap





    Storage Gatewa




    Cloud Front

  • r53

    Route 53











  • sns







    Cloud Search


    App Stream



  • opsworks



    Cloud Watch


    Elastic Beanstalk


    Code Deploy



  • dynamodb